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Abgtract

A new generic neural network (NN) application -- improving computationd efficiency of certain
processes in numerica environmental modds— is considered. This gpproach can be used to accelerate
the calculations and improve the accuracy of the parameterizations of severa types of physica

processes which generdlly require computations involving complex mathematica expressons, including
differentid and integral equations, rules, regtrictions and highly nonlinear empirica relaions based on
physcd or satistical modds. It is shown that, from a mathematica point of view, such
parameterizations can usually be considered as continuous mappings (continuous dependencies between
two vectors) and, therefore, NNs can be used to replace primary parameterization agorithms. In
addition to fast and accurate gpproximation of the primary parameterization, NN aso provides the
entire Jacobian for very little computation cost.

Four particular red-life gpplications of the NN gpproach are presented here: for oceanic numerical
models, aNN agpproximation of the UNESCO equation of state of the seawater (NN for the density of
the seawater) and an inversion of this equation (NN for the sdlinity of the seawater); for atmospheric
numerical modds, aNN approximation for long wave radiative transfer code; and for wave models, a
NN approximation for the nonlinear wave-wave interaction. In al consdered applications a sgnificant
accderation of numerical computations has been achieved. The first two of these NN applications have
dready been implemented in the multi scale ocean forecast system. at NCEP.

The NN approach introduced in this paper can provide numericaly efficient solutions to awide range of
problems in numerical modds where lengthy, complicated caculations, which describe physica,
chemica and/or biological processes, must be repeated frequently.

Keywords. neurd networks, numericd modeling, amaospheric modding, oceanic modding, wave
modeling, equation of state, nonlinear interaction, parameterization of physics



1. I ntroduction

In this paper, we discuss a recently emerged gpplication of neura networks for efficient (fast
and accurate) caculations of the computationdly expensive and complex mathematica formulaions
involved in environmental numericd modds. Any amospheric or oceanic circulation moded isbased on
aset of prognostic and diagnodtic differentid equations together with additiona equations required to
obtain a mathematicaly closed system. Such asystem, in principle, can then be solved to predict the
evolution of the environment in time if the initia conditions and any required externa boundary
conditions are prescribed. Even though the forecast problem may now be considered solvablein a
theoretical sense, inthereal world of smulation, it is necessary to deal with practica aspects of available
computationa resources and minimize the computer time taken to produce arun, in particular in the

context of operationa forecast systems.

The numerical mode contains terms that gppear in the dynamical equations, representing the effects of
unresolvable subgrid scale processes. These effects need to be parameterized in terms of the

dependent variables. Also, implicitly contained in the system are processes that ded with model physics
such as radiation, convection, nonlinear wave-wave interaction, etc, which need to be parameterized.
Accurate trestments of such parameterizations generaly reguire computations involving complex
mathemetical expressons, which may include differentid and integra equations, rules, redtrictions, highly
nonlinear empirical expressions, etc. that are developed based on physica or Satisticad models. The

complex mathematica formulations of these processes require cons derable computational resource.

For example, a spectrd atmospheric model with awell-developed description of physics and subgrid
scale parameteri zations may pend up to 70% of caculation time for smulating these processes
(Estrade et a. 2001). Theinfrared radiative hegting/cooling code requires more than 10% of the
computing time in the European Centre for Medium-Range Weather Forecast (ECMWF) generd
circulation modd and in the National Centers for Environmenta Prediction (NCEP) globd modd, even
though the computations are not afforded at every grid point (&8 ECMWF) and at every time step.



In ocean modes, the estimation of the full UNESCO equation of state to compute the seawater density,
represented by an empirically derived highly nonlinear equation relating dengity to pressure, sdinity, and
temperaure, takes a very sgnificant amount (~40% in high resolution models) of the total computational
effort. In addition, most forecast modd s include data assmilation procedures as an integrd part of the
forecast system to improve the initid conditions of the mode. When dedling with ocean models, most
often the data assmilation conssts of assmilating surface and subsurface temperature observations to
correct the model’ sthermd field. This temperature correction automatically makes it necessary to
adjus the Ainity field in the ocean modd in order to avoid gravitationd ingtabilities in the water column.
This requires inverting the complicated oceanic equation of state, which makes the computationd effort
even more time-consuming than the forward problem of computing the density itsdf. Another example
where intendgve computations are needed in aforecast modd isthe caculation of the land surface
temperature using a set of equations describing the atmospheric boundary layer and physica processes
inthe soil. Y et another example of intensive computationa problem in forecast modd s is the wind wave
forecagting problem in which an exact cdculation of the nonlinear wave-wave interactions using the

formulation of Hassdmann (1963) takes a prohibitively long time.

Inview of the congtraints imposed on the available computer resources, the caculation time alowed for
each parameterization is drictly limited in most operationa forecast models. Hence, very ofteniitis
necessary to use smplified forms of these complex representationsin carrying out the time integrationsin
aforecast moded, thereby sacrificing the accuracy of forecasts.  For example, the nonlinear wave
interactionsin awave forecast modd are replaced by a simplified discrete interaction approximation
(DIA) (see Hassdlmann et d 1985). Similarly, smplified fast parameterizations of physicsare used in
many parts of atmospheric and oceanic models. In most of these cases, accurate physical models have
been devel oped, but they cannot be used because they are computationdly too expensive. Often
amplified (even overamplified due to computationd efficiency requirements) parameterizations are
obtained, for example, by neglecting higher order terms of perturbation theory, by using empirical



goproximations, or Smply by neglecting the effects, which complicate the caculations. It iscommonin
many parameterization schemes that the number of input and output variables is rdaively smal, whereas
the volume of internd cadculationsislarge. A typicd exapleisthe parameterization of the radiative
fluxes in the atmosphere. Indeed accurate trestment of cloud-radiation and aerosol-radiation interactions
involves eaborate and numericaly onerous 3-dimensiond scattering methods. Hence, most often the
specific parameterization is a result of a compromise between accuracy and computationa efficiency
with an (sometimes) unpredictable effect on the forecast.

Improvementsin forecast modeding can be achieved not only by improving the representation of such
parameterizations as our understanding of the underlying physica processesincreases but dso by
improving our ability to compute these parameterizations accurately within the congtraints imposed by

the available computer resources.

In this paper we present some of the problems dedling with physica parameterizations and their
computations from a different (forma mathematica) point of view, namely that of improving the
computationd efficiency of available dgorithms. We propose a generic gpproach, which is based on
developing fast and accurate parameterizations of physics by gpproximating solutions of exact physica
models using neurd networks (NNs). From thisforma point of view an exact (best known) physica
model representing a physica process performs a smooth conversion of an input vector of parameters,
X = {X1, X2, ..., Xn}, X1 A" into an output vector of parameters, Y = {y, Vs, ..., ym, YT A ™ Thus,
each output parameter y; is a continuous function of multiple input variables x4, Xa, ..., X, (input vector
X). Symbolicdly thisinput-output dependence is depicted in Fig. 1.aand can be written as

Y = F(X); XT A" YD A™ (1.a)
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Fgure 1. Graphical representation of forward (a) and inverse (b) parameterizations.

If X and Y are rdlated through a cause and effect principle, the forward parameterization, eg. (1.8), can
be derived from firg principles. It isusudly awdl-posed problem. |If the inverse dependence

X=1(Y); XT A"YT A™ (1b)
isrequired (see Fig. 1.b) in anumericd modd, the inverse problem should be solved, which implies that
€g. (1.8) should be inverted. A solution of the inverse problem (1.b) or an inverse parameterization
provides each output parameter x; as a continuous function of multiple input variadblesys, Ys, ...,.¥m
(vector Yisan input vector now). Often theinverse parameterization (1.b) isanill-posed problem, and
sometimes multiple values of X can correspond to asingleY.  Forward, eqg. (1.a), and inverse, eqg.
(1.b), parameterizations represent the same mathematica object - a continuous mapping whichisa
continuous relationship between two vectors. Usudly these input/output relationships are highly

complex and nonlinear, but continuous or dmogt continuous (with afinite number of finite
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discontinuities), for physical processes taken into account in atmospheric, oceanic, and wave models.
Hence, if exact solutions to these complex relationships are caculated, however expengve the
computationa efforts may be, these solutions can be used by the generic mathematicd toal - that is, the
NNs - to produce fast and accurate gpproximations for continuous and amaost continuous mappings
(Funahashi 1989, Cybenko 1989, Chen and Chen 1995a,b, Attdi J-G. and G. Pages 1997). In this
approach, the cogtly exact caculation of the physics needs to be performed only once and “off ling’ to
enable the development of the fast and accurate gpproximation. After that only this fast and accurate
gpproximation will be used to cdculate the physics (coefficients of differentia equations) “on ling” ina
numericad modd.

We assume that the readers of this journa are well familiar with the NN technique. Therefore we do
not describe this technique in the paper. We only present here abrief list of main properties of NN,
which make them avery suitable generic tool for our gpplication.
NNs are able to accurately gpproximate complicated nonlinear input/output relationships (any
continuous and almost continuous nonlinear mappings).
while training the NN is often time consuming, its gpplication isnot. After thetraining isfinished
(it isusudly performed only once), each gpplication of the trained NN is an estimation of a
smple dgebraic expresson with known coefficients, which is practicaly instantaneous (severa
tens of floating point additions and multiplications).
NNs are andyticdly differentiable, in away that make the caculation of entire Jacobian matrix
cheap.
NN technigue is flexible enough to accommodate various additiona condraints, which may
arisein this gpplication.

In Section 2 of this paper we present two (forward and inverse) parameterizations for oceanic models,
in Section 3 for atmospheric, and in Section 4 a parameterization for wind wave models devel oped
using NNs. In Section 5, we discuss some important features of our gpproach and some generdizations

of standard NN techniques, which are required to accommodate these features.



2. Oceanic Applications: Neural Networksfor Efficient Calculation of Sea Water Density
or Salinity from the UNESCO Equation of State

In this section, we apply aNN technique to two related problemsin the fast calculation of physicsin
oceanic modeling and data assmilation. (i) In most ocean models, the UNESCO Internationa
Equation of State for Seawater (e.g., UNESCO, 1981) (UEYS) is used for the caculation of the
seawater dendity at each point of a3-D grid usng ardativey smdl time sep. The frequency of
updating the dendity depends on specifics of the model. For high-resolution modes, the solution of this
equation consumes a sgnificant part of the overal computation time. (i) In the data.assmilation
process, assmilation of temperature done, without making corresponding adjusments to sdinity, in
ocean modds, which employ the full equation of state, can lead to problems of gravitationd ingtabilities
(Woodgate 1998, Chalikov et d. 1998). To adjust the sdlinity, we need to caculae the sdinity from
UES as afunction of temperature, dendity and depth (or pressure), i.e. solve an inverse problemin
many points. Numerica inverson of the UESis an iterative procedure, which can consume severd

orders of magnitude more time than solving of the UES itsdlf.

The UES for seawater gives the following expression for the density anomaly d, (kg/nT) as described
by Foffonoff and Millard (1983),

d (T,S,P)=171(T,S,P) - 1000

2
r (T,S,0)

P
K(T,S,P)

r(T,S,P)=

where ? isthe density of seawater in kg/n?, T isthe temperaturein °C, S isthe sdlinity in practicd
inity units (psu), P isthe pressure, and K(T,SP) isabulk modulus (UNESCO, 1981).

The UES (2) isempiricaly based and given over athree-dimensond domain D = {-2< T <40°C, 0
< S<40 psu, and 0 < P < 10000 decibars}. Thisdomain represents dl possible combinationsof T, S



and P, which are globdly encountered. Mahematicdly, the functions ?(T,S,0) and K(T,SP) are
represented by multidimensiond high degree polynomias and, as aresult, the dengity (2) isaratio of

two three-dimensona polynomias which contain more than 40 parameters.

The UES has two mgjor drawbacks when it is applied in the context of ocean moddling. Thefirg isits
cumbersome form. For high-resolution models, the solution of this equation at each point of athree-
dimensiond grid for each time step consumes a significant part (up to 40%) of the overal computation
time. Second, it is not a smple matter usng the UES to obtain solutions for sdinity of sea water, since

this solution represents an inverse dependence.

The UES determines the dengty field from observed temperature, sdinity, and pressure to within a
standard error of approximately 0.009 kg m®; however, there are severa natural processes (e.g.
variationsin the composition of dissolved sdts) (Apd, 1987), contributing to the uncertainty in the
density of natural seawater. The resulting natural uncertainty in the density is of the order of 0.1 kg ni®
(Krasnopolsky et d. 2000, 2001b). Taking these uncertainties into account, it does not make sense to
use parameterization with higher accuracy in numerica ocean modelsif accuracy and computing time
increase together. Thisiswhy the accuracy of 0.1 kg m® was selected as the expected accuracy for the
NN parameterization. The accuracy of the NN parameterization for salinity expressed in terms of
density was also expected to be better than 0.1 kg m>.

Since the depth Z is used in NCEP ocean modd as avertical coordinate, and there exist asmple
pressure-depth relationship (Krasnopolsky et a. 2001b), we use Z ingtead of P in our consideration.
The UES defines two relationships (second relationship for sdinity through inversion),

?2=72T,S2 (3.9

S= 91,22 (3.b)
which are continuous mappings (degenerated mappings because one dimensiona vectors are on the
left). The NN technique was applied to approximate (3.a) and (3.b). To create atraining et for these
NNs
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Figure 2. Schematic representation of NN parameterizations for the
density and salinity of seawater. Additional outputs for derivatives are
not trained, they are calculated.

O

parameterizations in the three-dimensiond domain D (see above), 4,000 points (T;,S,Z;) were
generated on agrid. The UES was used to estimate the density of seawater, ?;, for each point. This
smulated data set {2, T;, S, Z} wasused in order to train the NNsto extract density and sdlinity. NNs
with three nonlinear neurons in one hidden layer and one linear neuron in the output layers were

selected. Two NN parameterizations were obtained (see also Fig. 2):

?2= 2w (T.S2) (4.3
S=Sw (T,2.2) (4.b)

whereboth 2y and Syy are expressed by :

K n
r(Shw =a W[ ftarh(@ W, +B} )] +b " (5
j=1 i=1

wherew, W, b, and B are NN weights and biases. Derivatives (Jacobian matrix) shown in Fg. 2 as
additional NN outputs are not actua outputs, which are trained during the NN training; they are
cdculated andyticdly through direct differentiating eg. (5). The NN parameterization (4a) for the
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dengty is about two times faster then the UES. The cdculation of the Jacobian matrix with the NN
parameterization requires an additiond time, which is about 70% of time required for the caculation of
dengty. The NN parameterization (4b) for the sdinity is severa hundreds times faster than an iterative
numerica inverson of the UES. In addition, the time required for the numerica inverson of the UES
(rete of converson of the iteration process) varies Sgnificantly. It strongly depends on inverson
agorithm and on the choice of the initid approximation for the sdinity.

To evauate the accuracy of the NN approximation (4), 16,000 points were generated within the
domain D on agrid, which did not include the training set points.  The dengty of seawater cadculated
from the UES (2) was compared to that calculated from the NN, ?un(T,S2), using (4.9). Tablel
shows several statistical measures of the differences (or errors) between the UES and the NN estimates
for dendty. Intermsof the bias and the RM S differences, the NN results for dengity clearly satisfy the
criterion mentioned above; both the bias and the RM S vaues do not exceed the uncertainties indicated

there and are less than 0.1 kg m®,

Tablel. Minimum, maximum, and mean (i.e., the bias) errors (e) and the RMSerror, all
expressed in kg m® (e = 2ues - 2wn)

Min e Max e Bias RMS
-0.12 0.15 0.00 0.04

To evaluate the errorsin using the NN approach to estimate the sdinity, we used the same 16,000
points (?;, Ti, S, Z) which were used to estimate the dengity. Initidly, the NN for Sy (4.b) was
gpplied to caculate anew dinity, s, usng the corresponding vaues (T, ?;, Z;). Then the differences
(S - s) were utilized to estimate the accuracy of the NN-derived dinities (fird line

in Table 2). To further evaluate the qudity of the NN-derived sdinities, the UES was gpplied again, this
timeto thetriad (T, S, Z) to recaculate the dengty of seawater, ?¢. 1f the NN-obtained values for
sdinity were perfect, then the density, ?¢, would be equal to ?;. The differences between these two
vaues, (? - ?¢), were then used to further estimate the accuracy of the sdinity-trained NN in terms of
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the dengity (second linein Table 2).

Table 2. Accuracies of the salinities estimated by the NN in terms of salinity and density.
Minimum, maximum, and mean errors together with the RMSerrors are presented.

Units Min error Max error Mean error RMSerror
Psu -0.33 0.85 0.00 0.10
Kgm? -0.27 0.71 0.00 0.08

Table 2 shows that the NN estimates of salinity (4.b) have an RMS error of 0.1 psu. In terms of the
related error in density, this accuracy corresponds to an RMS error of 0.08 kg m-3, which again does
not exceed the uncertainties discussed above.

A subgtantia additiona acceleration of calculations may be achieved by the use of differentid increments
of dengity, temperature, and sdinity. Hence, we extend our gpproach to estimate these quantities a so.

Additionaly, an efficient way of subgtantially reducing the computationa burden isto replace the

caculations of dendity per seby
qr qr cdculaions of itstotd differentid
Dr =—DT +—DS
1l 1S
(6)

where DT and DSareincrementsof T and S, §?2/1T, and 1? /Sarefunctionsof T, S and z Inthis
gpproach, after the dendity and its derivatives are calculated, eg. (6) is used during severa (usudly
severd tens) steps of integration to estimate the new dengity. Then the dengity and its derivatives are
recalculated, using the UES or NN gpproximation of the UES, to update the estimated values obtained
using (6).

The density and the derivatives /9T and §? /1S can be accurately calculated from the NN 2y, €q.
(4.9) (seeds0 Fig. 2). Thus, equation (6) can be reduced to

pr = o pr T
ir 1S
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The estimation of the density using eq. (6) requires severd cdculations of the UES (in that case the

Jacobians are computed by centered finite differences). The etimation of the density using eg. (7)

requires one estimate of the NN (4a) and its derivatives, which isfagter than (6). If 2u/fzisaso used

in (7) for vertical integration, the gain in the speed of caculations due to the use of the NN increases.

Table 3. Accuracies of the Jacobian estimated by the NN, in kgxm®xK™*, kgxm®xpsu™, and kgx
m3xm™. Minimum, maximum, and mean errors together with the RMSerrors are presented.

RMSN error isthe RMSerror relative to the norm of the corresponding derivative.

Derivative Min error Max error Mean error RMSerror | RMSN error
T2an/1T -0.04 0.06 0.01 0.02 6%
KIS -0.02 0.02 0.003 0.006 0.8%
12w/1z -0.0001 0.0001 0.0001 0.0001 2%

Table 3illugtrates the accuracy of Jacobian caculations using the NN parameterization (4a) with three
neurons in one hidden layer. All errors are estimated with respect to the Jacobian caculated explicitly,
using the UES (2). The RMSN error isardative error in percents with respect to the norm of the
corresponding derivative. Errorsin derivatives do not exceed 6%, which is acceptable for calculation of
density.

The NN approach (7) is used in the high resolution Multiscale Ocean Forecast System (Chalikov et d.
2002). Thisuse of NN and its derivatives has been shown to accelerate the dengity calculations about
10 times with the error in the density calculations not exceeding the natural uncertainty 0.1 kg/n.
Therefore, the computationa expense of calculating density has decreased from 40% to about 4-5% of
the total time of integration as aresult of usng the NN approximation in the modd.
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3. Atmospheric Applications. Neural Networksfor Efficient Calculation of Infrared

Radiative Fluxes

The next agpplication that we present tackles the problematic tradeoff between accuracy and
speed in the atimospheric infrared radiation computations. Transfer of energy by infrared radiation
sgnificantly contributes to the variations of atmaospheric temperature. The infrared atmospheric
Spectrum encompasses a wide range of variability, from the dow-varying Planck function to the very
detailed Structures of the individua absorption bands. As a consequence, accurate modeling of the
atmospheric radiative processes requires a high spectra resolution, which consumes alot of computing
time, and therefore can hardly be used for smulation of the atmosphere. Radiation computations aso
involve integras over solid angle and dtitude, that cannot be andyticdly solved and therefore
sgnificantly add to the computationd burden. Two drategies are used, often Smultaneoudy, to make
the models affordable. On the one hand, gatistical approaches have been developed that smplify the
cdculations of the three integras (over solid angle, dtitude and wave number) and of the impact of
clouds (Goody and Y ung 1989). On the other hand the computations are not performed at every time
step and at every grid point of the atmospheric model (Morcrette 2000). As an example, in the NCEP
forecast modd, infrared radiation variables are updated every three hours only.

The computationd efficiency is even more an issue in éaborate four-dimensond variationd (4D-Var)
andyds schemes. These powerful data assmilation systems have been devel oped in operationa weather
centers, like ECMWEF or MééoFrance, to correct the atmospheric forecasts at regular times with the
observations thet have been received since the previous andyss. 4D-Va determines adatisticaly
optimum forecadt, given the initid forecast and its assumed error characterigtics on the one Side, and the
observations with their error specifications on the other (e.g., Courtier et . 1994). To do this,
perturbations of the atmosphere need to be propagated in time at every step of the minimization process
with alinearized physcs. Only computetiondly efficient parameterizations can be used for this purpose.
For instance, in the operational 4D-
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Var physics at ECMWEF, radiation perturbations are created by temperature changes only. Neither
water vapor nor cloud evolution is taken into account (Mahfouf 1999).

Neurd network-based radiative transfer models (e.g., Escobar-Munoz et al. 1993, Key and Schweiger
1998, Faure et d. 2001, Schwander et a. 2001) may be able to address these issues. In particular, the
NeuroFlux approach (Chéruy et a. 1996, Chevallier et a. 1998b) has been successively tested in the

L aboratoire de Mééorologie Dynamique climate mode (Chevdlier et d. 1998a), in the ECMWF
forecast modd (Chevallier et d. 2000b) and is currently being tested in the ECMWF 4D-Var system.
This section describes the method, updates the results and summarizes the experience gained by this
gpproach on which considerable effort has been invested.

NeuroHux is mainly a neurd-network-based version of the broadband radiation model of Morcrette
(1991), hereafter EC-OPE, even though other models could be used in the training. EC-OPE was the
operationd code & ECMWE in the 90s. The integration over wave number is performed using a band
emissvity method in Sx spectrd regions covering the long-wave spectrum. The transmission functions
for water vapor and carbon dioxide are fitted using Padé gpproximants. Multi-layer gray bodies
represent the clouds (Washington and Williamson, 1977).

NeuroFH ux has been derived from EC- OPE using the same cloud representation and the Multi- Layer

Perceptron. Congstently with the former, upward and downward fluxes are computed in NeuroFlux as:

(8)

F(P)=4a(P)F.(P)
where P; isthe pressureleve, Fy is
the infrared flux in the presence of asingle layered black cloud in amospheric layer k or the clear-sky
flux (with the convention k=0 for clear sky), and a, isaweight. The a,’s are computed with asimple

parameterization as a function of the layered cloud characteristics (cloud cover, liquid and ice water
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contents, particle Sze, etc...) and depend on the way cloudy layers overlap. In NeuroHux, the F’'s are
computed with artificid neurd networks with single hidden layers, whereas EC- OPE uses the above-
mentioned band-emissvity method.

To summarize, NeuroFlux is made of a battery of specialized NNs (one for each atmospheric layer k
and for each type of flux -upward or downward-), the inputs of which include the temperature and gas
(water vapor and ozone) profiles, the surface characteristics and the mean carbon dioxide
concentration, whereas the cloud characteristics are processed by a separate parameterization. This
way of doing reduces the dimension of the individuad NNs, compared to a system where all

computations would be performed by asingle NN. With that design, NeuroH ux is about eight times
faster than EC-OPE.
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Figure 3. Statistics of the differences between the computations of NeuroF ux and those of

EC-OPE: cooling rates from NeuroFlux minus cooling rates from EC-OPE. ECMWF 6-hour forecasts,
L50 T319 (about 60 km horizontal resolution). 1 February 1999, 00, 06, 12 and 18 UTC. The infrared
cooling rates are the contribution of the infrared radiation to the variations of temperature over time.
They are proportiona to the derivative of the net fluxes with repect to pressure.
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The accuracy of NeuroFlux has been assessed through code- by-code comparisons, climate Smulations,
and 10-day forecadts. Figure 3 and 4 illugtrate the performance of the version that fits the 50-leve
verticd resolution that was used in the ECMWF operationa forecast system in 1999. The accuracy of
NeuroFlux is comparable to the accuracy of EC-OPE, with aneutral impact on the Smulations. In
particular the uncertainty introduced by NeuroFlux in the cloud cover smulations was shown to be
much smdller than that one induced by the reduced tempord frequency of radiation computation in the
ECMWEF climate smulations (Chevallier et d., 2000b).
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Figure4. L50 T319 (about 60 km horizontal resolution) simulations: forecast verification for
temperature expressed in terms of mean temperature bias over the Northern Hemisphere (12
cases) The forecast system uses either EC-OPE (full lines) or NeuroFlux (circles)

Even though the inputs of the NNsin NeuroFlux do not include the cloud profiles, some of the NNs
reach szesthat are unusudly large. For instance, the NN that compute the clear-sky upward fluxesina
60-layer verticd grid contains about 200 inputs and 60 outputs. As a consequence of this huge variable
gpace, the set up of the training datasets is particularly involving. It relies on the sampling of hundreds of
thousands of atmospheric profiles with a smple topologic approach, as described by Chevallier et d.
(20004). Similar work is done each time the vertical resolution is increased, because new levels are
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expected to provide origind information about the profiles that cannot be obtained by asmple
interpolation from the lower resolution datasets. Each verson of the training datasets includes more than

ten thousand profiles.

Despite the large number of synoptic weights in NeuroH ux, the partid derivatives of the computed
fluxes with respect to atmospheric variables (i.e. the Jacobians) contain features that are considered not
to be redigtic (Chevdlier and Mahfouf 2000). The characteristics of the smadl noise of the computed
fluxes (Figure 3) show up in the flux Jacobians. Thisis different from the behavior of the smaler NNs
presented in Section 2 (Table 3). Regularization techniques, such asthat one proposed by Aireset d.
(1999), only partidly improve the quality of the NN computation. Larger NNs may solve the problem,
but would complicate the training even more and would dow down the code, making it less attractive.
Thisissue of having correct senstivitiesis very important for the gpplication to 4D-Var where
lineerizations of the parameterizations are used. However, the approach of NeuroFlux alows for an

elegant solution. Equetion (8) is differentiated as:
dF (P)=a a,P)dF (P)+ F.(P)da.P) ©)

Equation (9) is used to caculate the flux perturbations. Its terms are determined asfollows. The a,’s
and the F’ s are obtained from NeuroFlux. A pre-computed mean Jacobian matrix, instead of the
unsatisfactory NeuroF ux Jacobians, alows for areasonably accurate estimation of the dF,’susing a
firg-order Taylor gpproximation, since those partia fluxes are weskly non-linear. Findly, theda,’s are

obtained andyticaly from the tangent-linear version of the a, model.

This gpproach is faster than the full tangent-linear modd of NeuroFlux by dmost atwofold factor, which
makesit even more attractive. It is being evauated as part of an improved version of the 4D-Var
linearized physics at ECMWEF, which introduces the trestment of the interaction between cloud and
radiation (Janiskova et d. 2002). This package includes NeuroFlux, a shortwave radiation model and a

22



diagnostic cloud scheme, on top of the currently-operationd smplified and linearized phydcs. It is
evauated by studying the linearized time evolution of andysis increments with reference to the non-linear
computation using the full physics of the forecast modd. An improvement (respectively a degradation)
of the tangent-linear trgjectory makesiit closer to (respectively further away from) the non-linear one.
Figure 5 illustrates the positive impact of the new physics on the wind increments after a 12-hour
integration, with agloba improvement of 3.3%. Therefore the tangent-linear wind increments are more
redlistic when the new physica package is used. Prdiminary results show a subsequent improvement of
the forecast quality (Janiskov4, et d., 2002).
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Hgure 5. L60 T159 (about 125 km horizontal resolution). Zonal mean impact of the new
linearized physics (with NeuroFlux) on the zonal component of the wind, in m.s™, in a 12-hour
simulation starting on 15 March 2001 00 UTC. Negative (respectively positive) values indicate
an improvement (respectively a degradation) compared to the previous linearized physics. Both
linearized physics are evaluated with reference to the non-linear run.
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4, Wave Application: A Neural Network Approximation for Nonlinear Interactionsin
Wind Wave M odels.
Ocean wind wave modeling for hindcast and forecast purposes has been at the center of interest of

wave forecasters for many decades. Numerica prediction modds are generally based on aform of the
spectra energy or action balance equation

DF
E = Sln + SnI + Sds + st (8)

where F isthe spectrum, S, istheinput source term, S, isthe nonlinear interaction source term, Sys IS
the dissipation or ‘whitecapping' source term, and S, represents additiona shalow water source terms.
The JONSWAP study (Hasselman et d 1973) identified the active role of the nonlinear interactionsin
wave growth. The SWAMP study (SWAMP Group 1985) then identified the need for explicit
modding of S, in wave models. State-of-the-art or so-called third generation wave models therefore

explicitly modd this source term.

Initsfull form (e.g., Hass8mann and Hassdimann 1985), the calculation of the interactions S, requires
the integration of aSx-dimensond Bolzmann integrd:

Si(k,)=TA F(k)=
= W40G(E1’R2’|23’l24) Xd(lzl + Iz2 ) |23 B lz4) Xd(Wl tW, - W - W4)
’ [nl N, ><(n4 " nz) +n, xn, ><(n3 ) nl)] dlzl dlzz d|23

F(K) ®

n(k) = w2 = gxk xtanh(kh)

W )
where the complicated coupling coefficient G contains moving sngularities (K. Hasslmann 1963). This
integration requires roughly 10° to 10* times more computational effort than all other aspects of the
wave model combined. Present operationd congtraints require that the computationd effort for the
edimation of S, should be of the same order of magnitude as the remainder of the wave model. This
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requirement was met with the development of the Discrete Interaction Approximation (DIA,
Hassdmann et a 1985). The development of the DIA dlowed for the successful development of the
firg third-generation wave model WAM (WAMDI Group 1988, Komen et d. 1994). Morethana
decade of experience with the WAM modd and its derivatives has identified shortcomings of the DIA.
The DIA tends to unredigtically increase the directiond width of spectra, has a syslematic spurious
impact on the shape of the spectrum near the spectra peak frequency, and has amuch too strong
sgnature a high frequencies. In present third generation wave models, these deficiencies can be
countered at least in part by the dissipation source term S5, which is generdly used for tuning the energy
balance in the equation (8). Although this approach often gives good results, it is counterproductive,
because it prohibits development of dissipation source terms based on solid physica considerations.
With our increased understanding in the physics of wave generation and dissipation, this becomes an
even bigger obstacle impeding further development of third- generation wave models.

Considering the above, it is of crucid importance for the development of third generation wave models
to develop an economical yet accurate approximation for ;. Here, we explore a Neura Network
Interaction Approximation (NNIA) to achieve this goa (see also Krasnopolsky et d 2001a,b). NNs
can be applied here because the nonlinear interaction (9) is essentially anonlinear mapping (symbolicaly
represented in eq. (9) by T) which relates two vectors (2-D fiddsin thiscase). Thus, the nonlinear
interaction source term can be considered as a nonlinear mapping between a spectrum F and a source

term S,

S =T(F), (20)
where T isthe exact nonlinear operator given by the full Bolzmann interaction integral (9) (Hasselmann
and Hasselmann 1985, Resio and Perrie 1991). Discretization of Sand F (asis necessary in any

numerical approach) reduces (10) to continuous mapping of two vectors of finite dimensions. Modern
high resolution wind wave models use descretization on atwo dimensona grid which leads to

25



dimengonsof Sand F vectors of order of N > 600 (Tolman 1999). It seems unreasonable to develop
a NN gpproximation of such a high dimensondity (more than 600 inputs and outputs). Moreover, such
aNN will be grid dependent.

In order to reduce the dimengiondity of the NN and convert the mapping (10) to a continuous mapping
of two finite vectors independent on the actua spectra discretization, the spectrum F and source
function Sy are expanded using systems of two-dimensiond functions each of which (F; and ? ) creates
acomplete and orthogond two-dimensond bass

i=1

I:»éxil:i’ SnI »é quq’
o=t (11)

wherefor x; and y, we have

X=AFFo Y= aSiYa (12)

where the double integra identifies integration over the spectrd space. Because both sets of basis
functions{F}i=1,...nand {? ¢} ¢=1,..m are complete, increasing n and min (11) improves the accuracy
of gpproximation, and any spectrum F and source function S, can be gpproximated by (11) with a
required accuracy. Subgtituting (11) into Eq. (10) we can get

Y = T(X), (13)
which represents a continuous mapping of thefinitevectors X T A" and YT A ™, and where T il

represents the full nonlinear interaction operator. This operator can be approximated with aNN with n

inputs and m outputs and k neurons in the hidden layer

Y = TNN (X) (14)
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The accuracy of this gpproximation (Tyy) is determined by k, and can generdly be improved by

increesing K.

Totrain the NN approximation Tyy of T, atraining set has to be created that consists of pairs of vectors
X and'Y. To create thistraining set, arepresentative set of spectra F,, has to be generated with
corresponding (exact) interactions S, using eg. (9). For each pair (F, Sy),, the corresponding

vectors (X,Y), are determined using eg. (12). These pairs of vectors are then used to train the NN to

obtain Tan.
After Tyy has been obtained by training, the resulting NN Interaction Approximation (NNIA) agorithm
consists of three steps: (1) decompose the input spectrum, F, by applying Eq. (12) to caculate X; (2)

esimate Y from X using Eq. (14); and compose the output source function, S, from Y using Eq. (11).

A graphica representation of the NNIA dgorithm is shown in Figure 6.
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Figure 6.Graphical representation of the NNIA agorithm.
The above describes the generd procedure for developing an NNIA. Development of an actual NNIA

requires the following steps: (1) sdlect basis functions F; and ?  and the number of each (n,m); (2)
design aNN topology (number of neuronsk); (3) construct a representative training set; and (4) select
training Srategies.

The firgt three points al have a significant impact on both accuracy and economy of aNNIA.
Unfortunately, there is no pre-defined way to tackle these issues as mentioned in section 2. 1tis
therefore unavoidable that the development of aNNIA involves multiple iterations. Thefirst
requirement for a NNIA to be potentialy useful in operationa wave modeling is that the exact
interactions S, are closdly reproduced for computational costs comparable to thet of the DIA. The

28



following shows the potentid of this approach with the design of asmple ad-hoc NNIA.

To address the basic feasibility of aNNIA, we have consdered a NNIA to estimate the nonlinear
interactions S, (f,?) asafunction of frequency f and direction ? from the corresponding spectrum
F(f,?). Herewe present the mgor results of this study to illustrate our approach (for more details see
Krasnopolsky et al. 2001a). To train and test thisNNIA, we used a set of about 20,000 simulated
redistic pectrafor F(f,?), and the corresponding exact estimates of S,(f,?) (Van Vledder et d 2000).
Comparison of smulated spectra with pectra generated by the WAVEWATCH mode (Tolman 1999,
Tolman and Chalikov 1996) shows that the approach, which we use for amulating spectra, dlowed us
to smulate reasonably redistic and complicated spectra describing a broad range of wave systems.
Separate data sets have been generated for training and vaidation.

Asis common in parametric spectra descriptions, we choose separable basis functions where

frequency and angular dependencies are separated. For F; thisimplies

F.(f.a)p F,=f  (f)f, ;@) (15)

A smilar separation is used for ? .. Considering the strongly suppressed behavior of F and S, for f ®
0, and the exponentidly decreasing asymptotic behavior for f ® ¥, generdized Laguerre's polynomids
(Abramowitz and Stegun 1964) are used to definef ¢ and ?;. Consdering that no directiond
preferencesexist in F and S, Fourier decomposition is used for f , and ?». The number of base
functionsis chosento ben = 51 and m = 64 to keep the accuracy of approximation for F on average
better than 2% and for S, - better than 5-6%. The number of hidden neuronswas k = 30, which
dlows a satisfactory NN gpproximation of the mapping (13) using (14).

Table5. RMSE gatigticsfor 10,000 S,

Mean RM SE S RMSE Max RMSE
DIA 0.0133 0.0111 0.104
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Table 5 compares three important atistics for the source function RM S errors (with respect to
exact solution) caculated using DIA and NNIA for 10,000 spectra (independent vaidation set). The
NNIA is nearly twice as accurate as DIA.

Figure 7. RMSE asfunctions of frequency f and angle (averaged over entire test set). Dashed line—
error of gpproximation (lower bound for al other errors). Solid line— DIA, line with squares—NNIA
(n=51:k=20:m=64), and line with triangles— NNIA (51:30:64)

Figure 7 shows mean RM SE as functions of the frequency f (left) and the angle ? (right). 1t dso
illugtrates the improvement of the NNIA accuracy by increasing the number of neurons, k, in the

hidden layer from 20 to 30. Numbersin Table 5 correspond to a NNIA with 30 neuronsin the hidden
layer (51:30:64).
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And findly, Figure 8 compares the DIA, NNIA, and exact algorithmsin terms of the accuracy and
computationd efficiency. The current preliminary verson of the NNIA agorithm is twice as accurate
and only about 5 times dower than the DIA dgorithm. In the current verson of the wind wave models,
an dgorithm that is up to 20 times dower than DIA can be accommodated; therefore, we sill have
enough room for further improving the accuracy of the NNIA. Considering that no optimization has yet
been applied in the development of the NNIA composition and decomposition procedures, it appears
reasonable to expect afina NNIA agorithm with computation requirements smilar to DIA but with
ggnificantly higher accuracy.

Figure 8. Comparison of the accuracy and computationa efficiency of the DIA,
NNIA. and exact daarithms  The harizontd time scaleis looarithmic.
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5. Summary and discussion

In this paper we presented a recently emerged NN gpplication devel oped by the authors for
amplifying and accelerating time-consuming caculaions in environmental numerical models using neurd
network techniques. Parameterizations of physica, chemica, and biologica processes, which occur at
different scales, condtitute an important class of such cadculations. It is shown that, from a mathemetica
point of view, descriptions of such processes can usualy be considered as continuous or dmost
continuous mappings (dependencies between two vectors). It isknown that neural networks are a
generic toal for gpproximation of such mappings and, therefore, can be used for fast and accurate
gpproximation of parameterizations of such processes. NNSs can aso easily provide andytica
Jacobians. Because the NN Jacobian is computationaly cheap, this approach is expected to be dso
very beneficid when used in 3-D and especidly in 4-D variationa data assmilation sysems. We
applied this approach to four specific problems associated with oceanic, atmospheric, and wave
modding.

The first and second applications consdered in the paper ded with the oceanic equation of state, which
is used for estimating the density and sdlinity of seawater in ocean circulation models. Separate neurd
networks for dengty and sdinity were developed using the UES as abads. Although the estimation of
density represents aforward problem, estimating sdinity from the UES represents a complicated inverse
problem, which has been very efficiently solved using the NN approach. The accuracy of the neurd
network-generated dengities and sdinities were of the same order as those obtained directly from the
UESitsef. However, the time required to perform the calculations of dendity using the neurd network
and the neura network Jacobian is severa timesless than that for UES. The time required for
caculating sdinity usng the neura network is saveral hundred times less than thet required for the
numerica inverson of the USE. Consequently, this gpproach has direct application to numerica ocean
models where the equation of state must be estimated repeatedly. At NCEP, a NN equation for

seawater dengity is currently used in an oceanic model.
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In the third gpplication, the neural network approach was shown to successively handle the
parameterization of infrared radiation in atmospheric models and to improve the tradeoff between speed
and accuracy of such computation. In particular, the scheme described allows speeding up the
computationd time by afactor of eight compared to the reference model, while not affecting the quaity
of the atmosphere smulations. Further improvements of the method include the use of amore accurate
reference mode in the training phase, such asthat currently operational a8 ECMWF (Morcrette et al.
2001). The high number of variablesinvolved in this NN application made it necessary to develop
origina gpproaches, such as for the set-up of the training dataset. Also, the modd computations are
gplit into several modules, each one of them being parameterized by a specific NN. Despite this
drategy, the NNs used are dtill very large, which affects the quality of the Jacobians, because it makes
the training more difficult. Further increase of the vertica resolution, or the introduction of additiond
input or output varigbles, might further reduce the robustness of the modedl. Thisis an obvious limitation
in the framework of the forecast modes, which complexity constantly increases. However, the
approach appears to be suitable for the variationa assimilation, where other parts of the physicsare
very smplified and where the speed factor is crucid. Also, some other aspects of the radiation
computation, such as the cloud horizonta heterogeneity, are cruddy handled by forecast models and
may benefit from NN parameterizations, as illustrated by Faure et a. (2001).

The fourth gpplication dedls with the nonlinear wave-wave interactionsin wind wave models. A
prototype of the NN agpproximation for thisinteraction is presented in thiswork. The NNIA
cdculaionsof S, are aout five orders of magnitude faster than the exact computation. The NNIA
cdculations are twice more accurate than those from DIA (overasmplified gpproximation, which is
currently used in the wind wave models) and require only 4-5 times more computationd effort than the
DIA cdculations with less than 5% of this time spent in the actua NN part of the dgorithm.
Decomposition of the input spectra F and composing the source function S, from the NN output
accounts for the rest. This decompodtion (i) significantly reduces the size of the NN and (i) makesthe
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gpproach practicaly independent on the mode grid and resolution.

These four gpplications illugtrate the strengths and limitations of the NNs for the application to the fast
smulation of environmenta processes. In the case of retrievas, as discussed by Krasnopolsky (1997)
and Krasnopolsky and Schiller (2002), neural networks compete with other Satistical methods, and
usudly perform better than those. Thisis because NNsare able to optimize the satistical link between
the inputs and the outputs, provided that a proper (i.e. diverse and regularly spread) training dataset is
gathered. In the present case, a sufficiently accurate physicaly based direct modd is usualy avalable.
The neurd networks are likely to be faster, but Sgnificant speed gains can aso be obtained with more
powerful computers, making other parameterizations affordable. Also, the purdy satistical formulation
of the neurd networks often makes the refinements of their smulations, like additiond inputs and
outputs, or more complex physics, more difficult than with an explicit physics.

The amulaion of environmenta processes may involve alarge number of inputs (i.e., several hundreds),
which make the NN too complex and complicatesthe training. For this complexity problem, two
possible solutions were developed and illustrated: the input and output vectors may be projected on a
basis (e.g., the NNIA gpplication) or a battery of smaler NNs may be used (e.g., infrared radiation
gpplication).

Finally, a cheap computation of Jacobian is one of the advantages of the NN gpproach. Using this
Jacobian in a combination with the tangent-linear gpproximation can additiondly acceerate caculations
(e.0., the scawater density application). However, since the Jacobian is not trained, it isSsmply
caculated through direct differentiation of atrained NN. For large NNs (e.g., infrared radiation
application) the accuracy of the NN Jacobian may not be sufficient for using with the tangent-linear
approximation. Severd solutions can be offered for this problem. First, the mean Jacobian can be
caculated and used (e.g., infrared radiation application). Second, the Jacobian can be trained if
included as actud additiond outputsin the NN or if trained as a separate additional NN. This solution,



however leads to an increase of the NN complexity or to additiona time for the Jacobian caculations.
Third, regularization techniques can be used to stabilize the Jacobians (e.g. Aires et a. 1999). For
ingance, the error (or cost) function, which is minimized in the process of the NN training, can be
modified to accommodate the Jacobian. Mathematicaly spesking, the Euclidian norm, which isusudly
used for caculating the error function, should be changed to the first order Sobolev norm. With such a
change the NN is trained to approximate not only the function (as with the Euclidian norm) but dso the
function’sfirs derivatives. Therefore, anew error function E can be expressed as a superposition of a

sandard error function Ey and a Jacobian error function E;

where TF/1x; isthe firat derivative straining vaue caculated from the exact function to be
goproximated. This solution does not change the number of the NN outputs; however, it may require
more hidden neurons and may sgnificantly complicate the minimization during the training snce the
complexity of the error function increases. As a consequence, the Jacobian modeling for large NNs
remains an open issue. This reflects the fact that one way of improving the computationd efficiency of a
direct modd isto degrade the quality of the derivatives, while kegping the direct modd within agiven

noise.

NNs obvioudy provide powerful solutions for the smulation of environmental processes, but like any
other parameterization, their relevance needs to be regularly re-evauated with respect to the particular
computationa and scientific contexts where they are developed and used.
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